
"What's the Sense of Using Echo?" Social Interaction in a Pair Programming

Session

Chris Bates Kathy Doherty Karen Grainger

C3RI/CCRC

Sheffield Hallam University

Sheffield, United Kingdom

C3RI/CCRC

Sheffield Hallam University

Sheffield, United Kingdom

C3RI/CCRC

Sheffield Hallam University

Sheffield, United Kingdom

c.d.bates@shu.ac.uk k.h.doherty@shu.ac.uk k.p.grainger@shu.ac.uk

1 Abstract

In this paper we report field observations of professional developers using pair programming

as they work together to find a way to refactor and rebuild existing prototype code. We use

discourse analysis to show how talk about problems in the code and possible solutions

constructs the meaning of, and shapes the purpose for, their task. We present the use of

ethnomethodological observations and discourse analysis as useful tools for the researcher

who wishes to understand software development in the wild rather than in the laboratory. We

show that the importance of talk is under-theorised in thinking about agile methods.

2 Introduction

The Agile Manifesto, (Beck et al. 2001) re-imagines software development as a socially

embedded technical process. At its heart lie four principles including, in the manifesto's

words, valuing "Individuals and interactions over processes and tools". The manifesto thus

foregrounds the subjective experiences and communication practices of developers as an

integral aspect of software programming and the management of projects. This reflects the

day-to-day realities of delivering code - very little software gets developed by one person

acting totally in isolation. Indeed, larger projects are highly managed cooperative social

activities within specific institutions – the corporation, the Web services provider, the game

development company and so forth. The Agile Manifesto is an attempt to recognise software

programming as an essentially human activity based on creative problem-solving, co-

operation and collaboration.

Working practices within Agile software engineering houses are far from fixed, but all Agile

methods are predicated on the idea that improved communication between developers and

management of relationships between customers and software houses will lead to better

product or better projects. Extreme Programming (XP) for example, is one of the more

popular instantiations of Agile, although it does pre-date the actual manifesto by a number of

years. In his discussion of XP, Beck (2000) spends a lot of time describing the need for better

oral and written communication. In the preface he writes that XP is different from other

approaches to programming for a number of reasons. One of these is its "reliance on oral

communication, tests, and source-code to communicate system structure and intent".

Beck writes that XP has four values: communication, simplicity, feedback and courage. Each

of these is described in idealised, almost religious, terms giving the impression that if

developers just talked more and trusted each other everything would turn out right. However,

it seems to us that, in terms of theory, the "communication" element of the Agile Manifesto

and in discussions of agile methods, remains stubbornly implicit. Furthermore the social

processes that are part and parcel of Agile would be better understood if grounded in

established theories of talk-at-work and talk-in-interaction. Our work explicitly sets out to

examine interaction within agile teams, employing an ethnomethodological framework to

analyse interaction between pair programmers as they rework some failing code.

Section 3 introduces the use of ethnomethodology to study work, section 4 looks at two

studies of pair-programming, section 5 looks at our data which is analysed in section 6.

3 Looking for Understanding

The agile community can give the impression that working code is all that matters. The

artefacts developers produce are somehow self-explanatory and if we simply read the source

we will understand what it means and how it should be used. But code is necessarily

contextual; reading the source will not reveal to us what the developer was thinking as they

wrote it. Kernighan & Pike, (1999) advise us to use in-code comments to "aid the

understanding of a program by briefly pointing out salient details or by providing a larger-

scale view of the proceedings". However, such comments tend to discuss the operation of the

code rather than providing a justification for its structure.

Several ideas and techniques from sociology have found their way into software development

but the most widely adopted is probably ethnomethodology. This theoretical approach

examines how we create understandings of the world and use them to build social situations,

which makes it particularly well-suited to the study of work and workplaces (Drew &

Heritage, 1992). Ethnomethodology tells us that in everyday life we engage in practical social

activities that are accountable, that is they can be observed, understood and evaluated by

others and that this understanding is context sensitive (Garfinkel, 1986). We turn the

ethnomethodological spotlight onto software developers and, since agile methods are explicit

expressions of a set of social rather than technical practices, they provide an interesting case

for study.

Ronkko (2007) suggests that ethnomethodology offers firm theoretical grounding from which

to explore and understand the activities and challenges that are part and parcel of software

engineering. He argues that software programmers are inevitably engaged in a search for

"adequate indexicality" as they deal with changing requirements and strive to develop a

product – software - that is essentially complex and 'invisible' (Brooks, 1995). Source code is

inherently "plastic", changing through the life of a product as it is maintained. As

requirements change source code is frequently remodelled such that it can lose its original

form and intent.

Indexicality refers to the way in which meaning (e.g. the specification of a requirement)

depends on the specific context of use or production, including mutually understood norms

and expectations. Programmers are always searching for adequate indexicality to make sense

of the task in hand and thus routinely work in a context of "incomplete communication".

Attempts to disambiguate the current programming task, or at least establish a framework of

shared understanding, thus become a feature of programming related social interaction. We

see this in the pair programming analysis that follows, where the history of previous

instantiations of the code is made relevant (and actively constructed) as part of a delicate and

dynamic negotiation of its existing design problems and proposed solutions. A key focus for

our analysis is the way in which accountability for the existing design is invoked and

responded to by participants. Within ethnomethodology, accountability refers to the various

ways that people present and explain their activities and the activities of others so as to render

them sensible, understandable and "proper" – aligned with prevailing norms and expectations

(Button & Sharrock, 1998, Dourish, 1995). Being held accountable can operate as a powerful

constraint on social action as members orient to, and actively renew, what counts as an

understandable action or acceptable conduct. When developers talk about code several

potential layers of accountability are in play - to the company, the project, the team, each

other and to themselves - within a complex context of work based roles and reputations and

where the ownership of creative design input and relationships within the team are potentially

at stake. Software design talk is thus potentially 'face-threatening', and, as we show, requires

careful interactional management. In our analysis we apply the notion of 'face' and 'face-

work' taken from Goffman (1955). Goffman defined face as the way that we present

ourselves to others when we interact. It is "the presentation of a civilised front to another

individual" which, Ting-Toomey (1994) writes, is culturally located and which provides a

"claimed sense of self in an interactive situation". Goffman (1972) further argues that social

interaction is structured by rules, which are protective of one's face and the face of others,

within a shared (and negotiated) understanding of what counts as acceptable conduct. We

shall see that face-work is an important part of the interaction between the paired developers

in our analysis.

4 Studying Pair-Programming

There are a few studies of pair-programming. Working within an experimental paradigm,

Muller & Padberg (2004) hypothesised that "the performance of a pair is dominated by how

comfortably the developers feel during the pair session". They tested their hypothesis through

simple experiments. A group of student programmers was paired so that those with most

experience worked with the least experienced. The students performed some simple tasks

then answered a question about how they individually felt during the experience. The

researchers found a correlation between the performance of a pair, as measured through time

taken to complete the task, and their comfort, or feelgood, during the task.

Performing a task under laboratory conditions is very different to the kind of activity that

programmers engage in at work. With this is mind, Sharp et al. (2004) undertook an

ethnography of a mature XP team to examine how work practices such as pairing affect the

quality of code. One advantage which ethnographic fieldwork has over laboratory

experiments is that all phenomena found in the workplace become part of the researchers'

data set. Sharp and colleagues are clear that talk was central to the processes of the

developers they were observing both in daily stand-ups and in paired coding sessions: "[t]he

oral tradition of the developers we observed, based on minimal transient documentation, was

particularly significant and they went to some trouble to ensure that appropriate

communication was maintained. The vehicle for facilitating this shared understanding was

one of the XP practices: that of metaphor, a simple story or model to share amongst the team

about how the software fits together". However, the detail of the talk-in-interaction of the

developers is not examined in this study so we learn little about how software programming

is embedded in communication practices or how design problems and solutions are

negotiated and resolved.

5 Data from the field

The work reported here is based on observations taken during summer 2010. As part of an

on-going study into the ways in which developers communicate about programming we spent

some time at a small software house that is avowedly agile, watching them write code. We

made audio recordings and took contemporaneous field notes. Background information was

gathered through informal conversation rather than through structured interviewing and is

being used to provide context for our analysis. In our work the context within which the talk

happens is central to our analysis. The main field worker is an experienced software engineer

for whom the details of programming are commonplace knowledge. Analysing these

interactions with an understanding of the culture of programming means that we can focus on

detailed phenomena without the distraction provided by trying to understand and interpret

specialised technical work. This approach follows that of Goodwin (2000) in contrast to those

ethnomethodologists who view context as anathema, wishing to let their respondents' words

quite literally speak for themselves.

5.1 Background to the fieldwork

E* is a small UK company which develops mobile telephony applications. Their software

runs on the network and on the telco's servers rather than on the handset and is used to send

bulk SMS messages. The software manages all stages of the messaging process including

auditing and billing as well as message creation. E* employs fewer than ten developers with a

similar number in operations and another ten or so working in marketing and sales.

Management and developers at E* describe their software development approach as agile.

They are actually very evangelical about the benefits they get from agility, being involved in

local user groups and blogging about agile methods. This has caused them problems in the

past as experienced developers often find the working environment difficult so that E* now

tends to recruit only recent graduates who it can train in its own approach. The development

team might be evangelical about agile but they are not adherents to any particular approach.

Rather than defining and restricting their approach to scrum or XP or kanban as so many

agile shops do, E* use a pick-and-mix approach to tools and techniques, selecting those

which fit best with their working practices and ethos. The most obvious practices they use are

story cards, estimation and pair programming and test-driven development.

This paper covers a session early one afternoon. The pair is Darren, an experienced developer

who has been at E* for a number of years and Andy, a recent graduate in his first year at the

company. Darren and Andy are an experienced pair who work together often but not

exclusively.

6 Analysis

In the interaction that we observe here, Darren and Andy are re-working code, which was

started and abandoned a few months previously. The code synchronizes contact lists between

the server and a user's phone. Our field notes include briefings from the developers about

their work and about the specific task we see them undertaking here. The task is framed by

the knowledge of the earlier failure – made evident by the previous abandonment of this work

- without which they would not be engaged in the present task.

At the start of the session the two developers are discussing the data that they need to store.

The figures in this paper are transcriptions of this talk. Coding conventions are listed at the

end of the paper.

1 Darren This is kind of the start of a process and over time it might evolve

2 (1.0) or it might not

3 Andy ha ha

4 Darren tends to depend how things are used (.)

5 Errm (1.8) yes I think for the implementation side of it the first pass our

implementation is about 'cause what we kinda doin' is a provider that's got its own

little database here

6 (1.5)

7 tha' that's isolated from that so it can store (.) contacts (.) these'll be probably

creatin' it's probably a session-type table

8 (1.3) a user-type table (0.8) ah (1.4) and then the data store (1.5)

Figure 1: Introducing the task

Darren's initiating turn informs Andy as to what they are about to do. This immediately

positions him in the role of 'expert'. He frames the conversation they are about to have as

"the start of the process" but, rather than directing Andy to undertake tasks, he launches into

an exposition of the future, of what will happen as they work. His use of hedges such as "kind

of", the modal verb, 'might', and the expression of doubt ("or it might not") reduce any

certainty in the statement and hence mitigate any potential face-threat to Andy. Pair

programming is in principle egalitarian and if one programmer directs the definition of the

task too much, the balance is potentially threatened.

In this opening sequence of talk, Darren holds the floor for the first few moments. At line 2

Andy acknowledges the light-heartedness of Darren's contribution but Darren maintains his

turn with a combination of fillers ("erm"), false starts (tha' that's isolated…) and pauses while

he refers to/adds to a sketch he is making which shows the rough structure of the code

Although Darren appears to be informing and consulting with Andy, notice that on line 5 he

says "yes" after a pause, as if responding to himself.

Using our field notes alongside their conversation we understand that they are going to

develop a service, the provider, which will supply contact details. The concluding "here" on

line 5 refers to an object on the diagram that he is drawing. With "what we kinda doin' is a

provider that's got its own little database here" once again he is actively performing and

constructing an identity as ‘the expert’, the one who does the thinking and has the answers.

But he mitigates this, by using "we" and "kinda", constructing a sense of provisionality for

the task at this stage.

9 Andy what's the sense around using echo?

10 (1.7)

11 Darren at the moment that functionality's all kind of been turned off 'cause it it got to a

certain point (1.1) and it wasn't really

12 (2.8)

13 to [improve the user experience]

14 Andy [what was the point of th]at?

15 Darren the (.) the pla' when we did it

16 to echo (.) then that was (.) the database was here the synchronisation was going

and the contacts were pushed up

17 (1.6) into this database. THERE WAS various issues (.) and from a usability point

of view it wasn't (1.0)

18 Andy Hmm mmm

19 (1.0)

20 Darren err >working that< well

21 and also echo (0.9) echo was kind of err (1.7) Yeah (1.0) it had problems

22 (0.3) it was kind of a big

23 Andy laughs

24 Darren laughs

25 a big test (.) but this is you know this is kinda tryin' a make it easier

Fig 2: Taking a turn

At line 9, Andy's question "what's the sense around using echo?" Here, Andy is referring to a

sketch we saw them make earlier in the day, which started as a drawing of the existing, failed,

design. Andy introduces a new topic by asking for an 'account', thus indicating that the state

of affairs under discussion is problematic. The implied criticism of the previous developers

(querying the "sense" of their actions) can be seen as a challenge and thus face-threatening

for Darren, in terms of authorship of the existing code and also the forward-looking direction

of the task initiated by Darren. Darren's response is hesitant – the pauses around this

statement total over 5.5 seconds. When discussing the database design he was clear and the

pauses were due to his sketching. On lines 10 through 13 the pauses are longer and he is not

distracted by any other activity.

Darren says that the functionality was "kind of" turned off, placing it in a nebulous third state

which is neither on nor off. This is more as a face-saving device than an accurate technical

description. Darren provides the justification, "cause it got to a certain point" and that the

code wasn't improving the user experience. The latter statement is a perfectly normal reason

for removing or refactoring a piece of code yet Darren's statement that the code is turned off

does not stop Andy from pursuing an explanation. Indeed Andy's turn at line 14 overlaps

Darren . This interruption comes at a possible turn transition point following Darren's long

delay and overrides the explanation. This question challenges the actions of the previous

programmers and continues to threaten Darren's face in terms of his claimed identity as the

experienced leader of the pair that wants to get on with things.We can't know what Darren's

motivations are in asking for the account but can see how it manifests and becomes

consequential in the interaction in terms of the ongoing negotiation of the work. As he starts

to talk on line 16 his volume increases when he says "there was", after the pause he rushes

through the explanation. Darren is involved in more facework here. Darren's joke that the

code wasn't "working that well" diffuses the tension and creates a turn away from the

problem code. On line 21 Darren begins to lighten the mood by moving attention to the echo

class and joking about its state. By describing it as problematic Darren lets Andy know that,

as the 'expert' he is aware of its limitations and that they won't be re-using this code. When he

says "it was kind of a big" then pauses. Andy takes this up as a joke by starting to laugh

demonstrating that a shared understanding has been reached, enabling them to move on from

the echo issue.

7 Discussion

Although this paper examines just a few minutes talk from a single working day, those

fragments are enough to begin to assess some of the ideas we introduced earlier. How are

indexicality and accountability made manifest, does context matter when examining code?

And, does ethnomethodology help us understand programming?

In this session the two developers are clearly trying to understand code which is new to one

of them and which the other hasn't seen for some time. Yet they approach this from different

directions. Andy tries to understand the code and design. When he asks "what's the sense of

using echo?" he has found something which he regards as accountable. To use Ronkko's

formulation, echo presents an indexicality problem for Andy whereas for Darren it is simply

something which is "switched off".

This discussion about the meaning of code demonstrates the importance of context and that it

is a live issue for programmers. The differing contexts of production and use alter meaning.

Some of the code in an application represents domain objects and exposes its intent and

context relatively easily. Domain classes often have clear and meaningful names, for

example, with interfaces that many programmers will understand. Other classes implement

functionality within the application: processing data for the domain classes or linking to other

applications. The meaning of these classes is inherently less clear. When Andy looks at the

echo class he sees it outside of the context of its production. He cannot understand what it is

meant to do or why it exists, his question positions Darren as the expert who is accountable

for the code but also challenges Darren’s direction of the task, insisting that they deal with the

issue of echo before moving on. We see that management of face becomes thus important for

Darren. The question, and positioning, threatens his face by both forcing him to act as the

expert and by challenging his expertise. If Darren were involved in the original creation of

the code then he ought to be able to explain its structure and meaning.

Beck, (2000), repeatedly writes that talking about code is an essential activity for developers.

No doubt Beck's idealised programmers would follow Andy's line and investigate echo in

detail. However, our excerpt shows that there is much more at stake in agile programming

than the ultimate goal of effective design: the two are also engaged in the task of managing

face here, as Goffman (1955) tells us they must.

8 Conclusion

Software development is a social activity. The agile movement foregrounds the social nature

of development and builds work practices and processes which embody it. Pair programming

is an example of such a practice. Two developers working together have to talk about the

problem and the solution and have to do so with an appropriate level of detail. Because it is a

social interaction, they have to establish and construct their relationship with one another via

face work. Programmers cannot talk about algorithms or data structures in a social vacuum.

Using discourse analysis we were able to discover the conversational strategies through

which the two developers accomplished professional and relational goals. Each of them had

interpersonal and professional goals to achieve. This is typical of our interactions at work

where we try to complete tasks cooperatively whilst managing relationships with our

colleagues. In analysing a few minutes of talk we were able to uncover this range of talk and

to show that the way programmers talk about a problem can impact directly upon the way

they choose to solve it.

The agile manifesto and its implementation in methods such as XP privileges talk. We have

shown that talk about programming cannot be separated from other social interactions which

compose our working lives. Whilst we would agree that talk, as a living communication, is

more useful than static documentation, we would not see it as problem-free.

9 Bibliography

Beck, K., 2000. Extreme Programming Explained: Embrace Change, Addison-Wesley.

Beck, K. et al., 2001. Manifesto for Agile Software Development. Manifesto for Agile Software

Development. Available at: http://www.agilemanifesto.org/ .

Brooks, F., 1995. The Mythical Man-Month anniversary ed., Addison-Wesley Longman.

Button, G. and Sharrock, W., 1998,The Organizational Accountability of Technological Work,

Social Studies of Science, 28:1, Sage Publications, pp73-102.

Dourish, P., 1995, Accounting for System Behaviour:Representation, Reflection and Resourceful

Action, Proceedings of Computers in Context '95.

Drew, P. and Heritage, J., 1992, Talk at Work, Cambridge University Press.Garfinkel, H., 1986,

Ethnomethodological Studies of Work, Routledge and Kegan Paul.

Goodwin, C., 2000. Action and embodiment within situated human interaction. Journal of

Pragmatics, 32, pp.1489-1522.

Goffman, E., 1955. On face-work: an analysis of ritual elements in social interaction. Journal for

the Study of Interpersonal Processes, 18, pp.213-231.

Kernighan, B. and Pike, R., 1999. The Practice of Programming, Addison Wesley.

te Molder, H. and Potter, J., Eds., Conversation and Cognition. Cambridge University Press,

2005.

 Muller, M. and Padberg, F., 2004. An Empirical Study about the Feelgood Factor in Pair

Programming. In Proceedings of the 10th International Symposium on Software Metrics.

METRICS’04. Chicago, USA: IEEE Computer Society.

Ronkko, K., 2007. Interpretation, interaction and reality construction in software engineering: An

explanatory model. Information and Software Technology, 49, pp.682-693.

Sharp, H. and Robinson, H., 2004. An ethnographic study of XP practice. Empirical studies of

software engineering, 9, pp.353-375.

Ting-Toomey, S. ed., 1994. The Challenge of Facework: cross-cultural and interpersonal issues

1st ed., Albany, New York, USA: State University of New York Press.

10 A note on the transcriptions

The examples of speech given in this paper are transcribed using the following conventions

taken from (Te Molder & Potter, 2005):

 Parentheses are used to identify pauses. Short pauses are shown with (.) whilst longer

ones show the time in seconds inside the parentheses as in (1.8)

 indented passages show where talk is synchronised

 [] indicate overlapping passages

 Capital letter show an increase in volume

 Angle brackets > < are used to show pieces of talk which are faster than normal

